Window-Level Is a Strong Denoising Surrogate

نویسندگان

چکیده

CT image quality is heavily reliant on radiation dose, which causes a trade-off between dose and that affects the subsequent image-based diagnostic performance. However, high can be harmful to both patients operators. Several (deep learning-based) approaches have been attempted denoise low images. those require access large training sets, specifically full images for reference, often difficult obtain. Self-supervised learning an emerging alternative lowering reference data requirement facilitating unsupervised learning. Currently available self-supervised denoising works are either dependent foreign domains or pretexts not very task-relevant. To tackle aforementioned challenges, we propose novel approach, namely Self-Supervised Window-Leveling Image DeNoising (SSWL-IDN), leveraging innovative, task-relevant, simple, yet effective surrogate—prediction of window-leveled equivalent. SSWL-IDN leverages residual hybrid loss combining perceptual MSE, all incorporated in VAE framework. Our extensive (in- cross-domain) experimentation demonstrates effectiveness aggressive (abdomen chest) acquired at 5% level only (Code https://github.com/ayaanzhaque/SSWL-IDN).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variable Window Approach for Image Denoising

Several methods have been developed to enhance the performance of image denoising algorithms. In this letter we have developed an algorithm for image noise removal based on local adaptive window size/shape filtering. While rectangular windows are efficient, they yield poor results near object boundaries. We describe an efficient method for determining the variable size of the locally adaptive w...

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

A mathematical algorithm for ECG signal denoising using window analysis.

BACKGROUND The presence of parasite interference signals could cause serious problems in the registration of ECG signals and many works have been done to suppress electromyogram (EMG) artifacts noises and disturbances from electrocardiogram (ECG). Recently, new developed techniques based on global and local transforms have become popular such as wavelet shrinkage approaches (1995) and time-freq...

متن کامل

Adaptive window size image denoising based on ICI rule

An algorithm for image noise-removal based on local adaptive window size ¿ltering is developed in this paper. Two features to use into local spatial/transform-domain ¿ltering are suggested. First, ¿ltering is performed on images corrupted not only by additive white noise, but also by imagedependent (e.g. ¿lm-grain noise) or multiplicative noise. Second, used transforms are equipped with a varyi...

متن کامل

Moving-window Varying Size 3d Transform-based Video Denoising

In this paper we consider the problem of suppressing additive noise in video data. We propose a transformbased video denoising method in sliding, local 3D variable-sized windows. For every spatial position in each frame we use a block-matching algorithm to collect highly correlated blocks from neighboring frames and form 3D arrays for all predefined window sizes by stacking the matched blocks. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-87589-3_47